石鑫华视觉网| 东莞华视自动化科技有限公司|机器视觉商城|机器视觉论坛|淘宝店铺

机器视觉_石鑫华视觉网_光源_控制器_工业相机_镜头_视觉方案_NI_LabVIEW_Vision_VBAI_图像处理教程_论坛_商城_东莞华视自动化科技有限公司,机器视觉,工业相机,工业镜头,LED光源,图像处理,视觉方案,VBAI,LabVIEW

当前位置: 首页 > 图像 >

边缘检测

时间:2012-10-10来源:shixinhua.com石鑫华视觉网 作者:石鑫华 点击: 999999次

边缘检测Edge Detection

边缘检测概述

边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。 这些包括(i)深度上的不连续、(ii)表面方向不连续、(iii)物质属性变化和(iv)场景照明变化。 边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。

边缘检测简介

图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于查找一类和基于零穿越的一类。基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位梯度最大的方向。基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。

边缘属性

  边缘可能与视角有关—— 也就是说边缘可能随着视角不同而变化,典型地反映在场景、物体的几何形状一个将另一个遮挡起来,也可能与视角无关——这通常反映被观察物体的属性如表面纹理和表面形状。在二维乃至更高维空间中,需要考虑透视投影的影响。
  一个典型的边界可能是,例如一块红色和一块黄色之间的边界,与此相反的是边线可能是在另外一种不变的背景上的少数不同颜色的点。在边线的每一边都有一个边缘。在许多图像处理的应用中边缘都起着非常重要的作用。然而,在最近几年,不明显依赖于边缘检测作为预处理的计算机视觉处理方法研究取得了一些实质性的研究成果。

简单边缘模型

自然界图像的边缘并不总是理想的阶梯边缘。相反,它们通常受到一个或多个下面所列因素的影响:
  1)有限场景深度带来的聚焦模糊。
  2)非零半径光源产生的阴影带来的半影模糊。
  3)光滑物体边缘的阴影。
  4)物体边缘附近的局部镜面反射或者漫反射。
  尽管下面的模型不很完美,但是误差函数 erf 是常被用于实际应用中边缘模糊效果的建模。
  这样,一个在位置 0 有一个边界的一维图像 f 可以用下面的模型来表示:
一维图像函数  
  这样,在边界的左侧亮度是:
  
------分隔线----------------------------
石鑫华推荐